首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8120篇
  免费   1326篇
  国内免费   1255篇
化学   5990篇
晶体学   88篇
力学   664篇
综合类   94篇
数学   1113篇
物理学   2752篇
  2024年   7篇
  2023年   161篇
  2022年   129篇
  2021年   223篇
  2020年   313篇
  2019年   299篇
  2018年   227篇
  2017年   243篇
  2016年   418篇
  2015年   337篇
  2014年   424篇
  2013年   578篇
  2012年   711篇
  2011年   680篇
  2010年   559篇
  2009年   474篇
  2008年   528篇
  2007年   448篇
  2006年   436篇
  2005年   420篇
  2004年   360篇
  2003年   328篇
  2002年   367篇
  2001年   333篇
  2000年   228篇
  1999年   232篇
  1998年   177篇
  1997年   164篇
  1996年   180篇
  1995年   138篇
  1994年   129篇
  1993年   96篇
  1992年   69篇
  1991年   67篇
  1990年   43篇
  1989年   26篇
  1988年   32篇
  1987年   18篇
  1986年   28篇
  1985年   20篇
  1984年   9篇
  1983年   14篇
  1982年   9篇
  1981年   9篇
  1980年   4篇
  1979年   1篇
  1974年   1篇
  1957年   3篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
81.
In this paper, we define a new constrained multi-component KP(cMKP) hierarchy which contains the constrained KP(cKP) hierarchy as a special case. We derive the recursion operator of the constrained multi-component KP hierarchy. As a special example, we also give the recursion operator of the constrained two-component KP hierarchy.  相似文献   
82.
In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.  相似文献   
83.
In view of the continuously worsening environmental problems, fossil fuels will not be able to support the development of human life in the future. Hence, it is of great importance to work on the efficient utilization of cleaner energy resources. In this case, cheap, reliable, and eco-friendly grid-scale energy storage systems can play a key role in optimizing our energy usage. When compared with lithium-ion and lead-acid batteries, the excellent safety, environmental benignity, and low toxicity of aqueous Zn-based batteries make them competitive in the context of large-scale energy storage. Among the various Zn-based batteries, due to a high open-circuit voltage and excellent rate performance, Zn-Ni batteries have great potential in practical applications. Nevertheless, the intrinsic obstacles associated with the use of Zn anodes in alkaline electrolytes, such as dendrite, shape change, passivation, and corrosion, limit their commercial application. Hence, we have focused our current efforts on inhibiting the corrosion and dissolution of Zn species. Based on a previous study from our research group, the failure of the Zn-Ni battery was caused by the shape change of the Zn anode, which stemmed from the dissolution of Zn and uneven current distribution on the anode. Therefore, for the current study, we selected K3[Fe(CN)6] as an electrolyte additive that would help minimize the corrosion and dissolution of the Zn anode. In the alkaline electrolyte, [Fe(CN)6]3– was reduced to [Fe(CN)6]4– by the metallic Zn present in the Zn-Ni battery. Owing to its low solubility in the electrolyte, K4[Fe(CN)6] adhered to the active Zn anode, thereby inhibiting the aggregation and corrosion of Zn. Ultimately, the shape change of the anode was effectively eliminated, which improved the cycling life of the Zn-Ni battery by more than three times (i.e., from 124 cycles to more than 423 cycles). As for capacity retention, the Zn-Ni battery with the pristine electrolyte only exhibited 40% capacity retention after 85 cycles, while the Zn-Ni battery with the modified electrolyte (i.e., containing K3[Fe(CN)6]) showed 72% capacity retention. Moreover, unlike conventional organic additives that increase electrode polarization, the addition of K3[Fe(CN)6] not only significantly reduced the charge-transfer resistance in a simplified three-electrode system, but also improved the discharge capacity and rate performance of the Zn-Ni battery. Importantly, considering that this strategy was easy to achieve and minimized additional costs, K3[Fe(CN)6], as an electrolyte additive with almost no negative effect, has tremendous potential in commercial Zn-Ni batteries.  相似文献   
84.
Journal of Solid State Electrochemistry - Ni-rich layered cathode materials LiNixCoyMn(1-x–y)O2 (x ≥ 0.8) suffer from capacity decay due to structural deterioration during...  相似文献   
85.
The separation of isomeric C4 paraffins is an important task in the petrochemical industry, while current adsorbents undergo a trade-off relationship between selectivity and adsorption capacity. In this work, the pore aperture of a cage-like Zn-bzc (bzc=pyrazole-4-carboxylic acid) is tuned by the stepwise installation methyl groups on its narrow aperture to achieve both molecular-sieving separation and high n-C4H10 uptake. Notably, the resulting Zn-bzc-2CH3 (bzc-2CH3=3,5-dimethylpyrazole-4-carboxylic acid) can sensitively capture n-C4H10 and exclude iso-C4H10, affording molecular-sieving for n-C4H10/iso-C4H10 separation and high n-C4H10 adsorption capacity (54.3 cm3 g−1). Breakthrough tests prove n-C4H10/iso-C4H10 can be efficiently separated and high-purity iso-C4H10 (99.99 %) can be collected. Importantly, the hydrophobic microenvironment created by the introduced methyl groups greatly improves the stability of Zn-bzc and significantly eliminates the negative effect of water vapor on gas separation under humid conditions, indicating Zn-bzc-2CH3 is a new benchmark adsorbent for n-C4H10/iso-C4H10 separation.  相似文献   
86.
Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I/I3 redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm−1) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2-modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g−1 after 200 cycles.  相似文献   
87.
Heavy-atom integration into thermally activated delayed fluorescence (TADF) molecule could significantly promote the reverse intersystem crossing (RISC) process. However, simultaneously achieving high efficiency, small roll-off, narrowband emission and good operational lifetime remains a big challenge for the corresponding organic light-emitting diodes (OLEDs). Herein, we report a pure green multi-resonance TADF molecule BN-STO by introducing a peripheral heavy atom selenium onto the parent BN-Cz molecule. The organic light-emitting diode device based on BN-STO exhibited state-of-the-art performance with a maximum external quantum efficiency (EQE) of 40.1 %, power efficiency (PE) of 176.9 lm W−1, well-suppressed efficiency roll-off and pure green gamut. This work reveals a feasible strategy to reach a balance between fast RISC process and narrow full width at half maximum (FWHM) of MR-TADF by heavy atom effect.  相似文献   
88.
Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat−1 h−1 (2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.  相似文献   
89.
Covalent organic frameworks (COFs) have gained significant attention as key photocatalysts for efficient solar light conversion into hydrogen production. Unfortunately, the harsh synthetic conditions and intricate growth process required to obtain highly crystalline COFs greatly hinder their practical application. Herein, we report a simple strategy for the efficient crystallization of 2D COFs based on the intermediate formation of hexagonal macrocycles. Mechanistic investigation suggests that the use of 2,4,6-triformyl resorcinol (TFR) as the asymmetrical aldehyde build block allows the equilibration between irreversible enol-to-keto tautomerization and dynamic imine bonds to produce the hexagonal β-ketoenamine-linked macrocycles, the formation of which could provide COFs with high crystallinity in half hour. We show that COF-935 with 3 wt % Pt as cocatalyst exhibit a high hydrogen evolution rate of 67.55 mmol g−1 h−1 for water splitting when exposed to visible light. More importantly, COF-935 exhibits an average hydrogen evolution rate of 19.80 mmol g−1 h−1 even at a low loading of only 0.1 wt % Pt, which is a significant breakthrough in this field. This strategy would provide valuable insights into the design of highly crystalline COFs as efficient organic semiconductor photocatalysts.  相似文献   
90.
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal–organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号